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Epidemic surveillance in a community involves monitoring infection trend, triggering
alarms before outbreaks, and identifying sources and paths of disease transmission.
Algorithms for outbreak detection that are derived from industrial statistical process
control (SPC) and scan statistics have been reported in the literature, but there are rela-
tively few methods reported for identifying transmission paths. In this work, we propose
an expanded spatial-temporal (EST) model for identifying infection sources. Three di-
mensional information, subject, location, and time, are expanded into a two-dimensional
space by dividing the time horizon into segments and multiplying each segment by the
locations. Based on the EST model, we further propose a variable-selection algorithm
to identify potential location/time combinations as sources of infection, and thus achieve
diagnosis. Numerical simulations show that the proposed scheme is effective in locating
infection sources.

Keywords Diagnosis; Healthcare surveillance; Statistical process control; Variable
selection.

Mathematics Subject Classification Primary 62H20; 62J05 Secondary 62P30.

1. Introduction

Globalization has heightened international trade and travel, which in turn have increased
both the scale and speed of epidemic disease dissemination (Cash and Narasimhan, 2000).
Recent epidemic diseases, such as SARS (Yip et al., 2008) and bird flu, disseminated
globally within a short period of time. The most recent instance, the pandemic H1N1 2009,
attacked more than 214 countries, overseas territories and communities worldwide, leading
to over 18,036 deaths prior to May 9, 2010 (WHO, 2010). It is commonly realized that
efficient epidemic surveillance can help control the spread of infectious diseases, save lives,
and reduce losses (see, e.g., Allard, 1998; Cash and Narasimhan, 2000; Woodall et al., 2008).

In recent years, great social and academic efforts have been devoted to epidemic
surveillance activities. There are two specific tasks that are of great importance: outbreak
detection and source diagnosis. By closely monitoring epidemic data, outbreak detection
aims to trigger alarms before a real and serious outbreak occurs; on the other hand, source
diagnosis aims to identify sources of disease infection, locate high-risk locations and provide
information for effective control measures. Therefore, extensive studies aimed at avoiding
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serious outbreaks and controlling disease dissemination have been conducted in collecting
and analyzing epidemic-related data, especially for the purpose of outbreak detection (see,
e.g., Allard, 1998; Andersson, 2009; Rolka et al., 2007; Tsui et al., 2008).

Different methods, such as statistical process control (SPC) and scan statistics, have
been developed for detecting outbreaks in complex healthcare data streams. SPC, or more
specifically, control chart techniques, have been widely used in the manufacturing industry
to monitor the process status and detect faults. Because the detection of epidemic outbreaks
is similar to the detection of process faults, traditional SPC techniques, including expo-
nentially weighed moving average (EWMA), cumulative sum (CUSUM), and Hotelling’s
T 2 charts, have been extended for use in healthcare surveillance (see, e.g., Allard, 1998;
Carey, 2003; Frisen and Wessman, 1999; Hanslik et al., 2001). These methods are generally
effective in detecting sustained shifts in a process and are potentially helpful in detecting
epidemic outbreaks. However, many researches have pointed out that epidemic data, differ-
ent from the data collected in industrial processes, often consist of both spatial (incidence
location) and temporal (incidence time) information (Hutwagner et al., 2003; Pfeiffer et al.,
2007). Most conventional SPC methods are designed based on temporal information only.
In addition, most of these SPC methods cannot provide diagnostic information to help
identify infection sources and outbreak locations when an alarm is triggered.

The typical method for identifying outbreak sources involves the tracking of laboratory-
confirmed cases. When the primary case is determined based on the manifestation time
of symptoms, all related subjects in the social network of the case are investigated. After
collecting the demographic information and activities of related subjects, the hypothesis is
tested to evaluate the significance of potential sources. For example, to identify the source
of a food-poisoning outbreak, Cowden et al. 1989, collected data on the food consumed
one week before the onset of the symptoms. The numbers of subjects who have or have not
consumed the food are separately counted. Then, statistical tests are conducted to confirm
whether a statistically significant number of patients are associated with this food. Horby
et al. 2003, reported the use of a similar approach in analyzing a national outbreak of
multi-resistant Salmonella enterica. However, this method of dealing with such detailed
data is very inefficient and may ignore important signals when the data are very sparse.

Recently, algorithms based on scan statistics that can effectively use both temporal
and spatial information have been developed for the surveillance purpose (Kulldorff, 2001;
Sonesson and Bock, 2003). The scan statistics consider both temporal and spatial informa-
tion, and involve counting the number of incidences in different regions during the most
recent time period with a fixed length (Woodall et al., 2008). Scan-based methods can detect
changes in infectious rates at an early stage and provide diagnostic information relating
to both time and location (Shmueli and Burkom, 2010). However, scan statistics only use
spatial information at certain aggregated levels; the total number of infected subjects in
each area is counted and monitored. More detailed information of the subjects, such as the
travelling path and time information, is not considered.

In epidemic surveillance, diagnosis involves finding the sources, time and location of
infection, and determining the paths of transmission. Epidemic disease transmission usually
begins in clustered-population communities (Bailey, 1986). Providing accurate diagnosis
information is as important as triggering alarms before outbreaks. The capability to identify
high-risk locations where a subject may be infected and to determine infection locations if
one is already infected is critical to an epidemic surveillance system. Incorrectly identified
times and locations may result in ineffective immunity efforts, or may even void such
efforts. Hence, diagnosis is critical to healthcare surveillance and control. Traditional SPC
methods may not be able to provide adequate diagnosis information because these methods
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only use temporal information. As was suggested by Tsui et al. 2008, the scan-based
methods can provide certain positional information when an alarm is triggered, but the
diagnostic information remains at an aggregated level, without details of the subjects and
their activities.

Detailed activities and corresponding location and time information of a subject are
known to contain rich information that may be related to disease transmission. Such infor-
mation can be gained under some special situations. Hu et al. 2004, reported the efforts they
made in the 2003 SARS outbreak. The authors tracked the recent activities of confirmed
cases, and isolated the people and locations they visited. In this way, detailed activities
and corresponding location and time information are collected. In a population-intensive
campus, the attendance records, dinning and consuming records, and curriculum or task
allocation information collected automatically by an IT system could be used for such
diagnosis purpose.

Recently, Horby et al. 2003, suggested that the use of such information for surveillance
can effectively aid in accurate source diagnosis. Therefore, in this paper, we propose a new
diagnosis method for healthcare surveillance by considering the trajectories of an individual
subject in a particular area. We choose a primary school as an example. To ensure the
sanitation and safety of the population, there is no doubt that schools must be taken into
consideration. In addition, children and teenagers exhibit high attack rates in epidemic
outbreaks such as influenza (Frost, 1920; Monto et al., 1969) and tuberculosis (Frost,
1939). Schools also play an important role in disseminating epidemic diseases due to their
close link with families, which are the basic units of the society (Jordan, 1960; Monto et al.,
1969; Potter et al., 2012). Furthermore, schools can be considered as a typical population-
clustered community because they carry all of the community characteristics needed for
epidemic surveillance. A study of the epidemic surveillance problem in schools can improve
the understanding of such problems in other communities, such as labor-intensive factories.

So far, we have seen many works related to modeling the spread of infectious diseases.
Usually, the spread model uses the individuals’ information as mitigation, person-to-person
interaction intensity to explain the way epidemics spread. They build different deterministic
or stochastic models to identify the factors which may influence the patterns or trends of
spread. For example, Dye and Gay, 2003, studied how and why SARS spread from one
person to another. However, the focus of this work is not to model SARS or any disease’s
spread mechanism, but on outbreak diagnosis, that is, to find out when and where the
infection occurred. What is common is that we also believe the person-to-person interactions
could potentially bring infection (location factors may do this, too). We assume all the
infections happen in the common locations we identified. Hence, we collect the samples’
detailed activities information and model these data to make diagnosis. This model doesn’t
try to create further understanding about the mechanism of spread; it instead serves as a
tool to identify when and where the transmission happens, and provides information for
medical investigation and control efforts.

When an alarm is triggered by an increasing number of infected subjects in a school,
follow up actions should be taken to respond to early signs of an epidemic outbreak. The
activities of all students and teachers (referred to as “subjects” hereafter) involve both time
and location information. Therefore, such information should be recorded, and clues to
possible transmission sources should be identified. The paths of subjects in a school as
they move from one place to another are also informative. Information of both infected and
healthy subjects is necessary to diagnose the epidemic disease. For example, an individual
may be infected on Friday in school based on the incidence information, but whether
the individual was infected in a classroom or on the playground, in the morning or in the
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afternoon, is unknown. If the information of individuals with historically similar or different
activities is given, the differences/similarities may provide clues to the transmission paths of
the disease. Therefore, different from the traditional monitoring methods that only consider
the number of infected cases, this work considers the daily activities of all subjects to make
more focused and informative conclusions and suggestions. As such information involves
both spatial and temporal details, we develop a new scheme to trace potential transmission
paths and identify high-risk locations.

In the following sections, we first build a model for a community (for example, a
school), namely, the expanded spatial-temporal (EST) model. As previously emphasized,
multi-dimensional information should be collected for epidemic surveillance. The EST
model incorporates all related information using a two-dimensional matrix, which can be
handled by a wide range of existing statistical methods. Specifically, we treat each subject
as one sample; the spatial and temporal dimensions of the subjects are expanded into a
large one-dimension multi-way matrix. The details of the EST model are introduced in the
subsequent section.

Different from the traditional studies that try to model the spread of a disease, this work
is devoted to the diagnosis of infectious diseases rather than modeling their transmission.
The spread model usually takes spread as “growth,” individuals’ location and migration as
“contact distribution.” Those works try to reveal how the individuals’ contact information
affect the trends and phenomena of the geographical spread (Mollison (1977)). However, in
this work, we treat the infection status as a response variable and locations (plus time infor-
mation) as explanatory variables; the diagnosis of an alarm is then equivalent to selecting
variables to explain the behavior of the response variables. In our model, we assume that
such transmission is caused by person-to-person interactions in certain time/location, then
focus on how to use the samples’ detailed activities’ information to make the outbreak di-
agnosis. Such information would be helpful to further medical diagnosis and immunization
measures.

The rest of this paper is organized as follows: Sec. 2 introduces the EST model
used for diagnosis and presents the statistical framework for solving this problem; Sec. 3
investigates the performance of the proposed epidemic disease diagnosis scheme. Finally,
Sec. 4 concludes this paper with suggestions for future research.

2. The Expanded Spatial–Temporal Model for Epidemic Surveillance

The extraction of diagnostic information in an infected community requires tracking the
detailed activities of each subject. To characterize the behavior of a group of subjects, three-
dimensional information is necessary: subject, location, and time. However, the visiting
time of different subjects may not align with each other and often overlap. In this section,
we first explore the features of an available dataset; then we construct a generic diagnosis
model. All population-clustered communities, such as factories, have a similar information
structure and data characteristics. Therefore, the methodology developed in this work can
be generalized to other scenarios for the same surveillance purpose.

2.1. Problem Description

We introduce the problem and construct the model based on a simplified but representative
infrastructure: a school with three classrooms, a library, a canteen, a study room, an office
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Figure 1. The information stream of daily activities in a school. (Color figure available online.)

and a playground. i.e., eight locations in all. Then we sample three subjects, Jim, Mary
and Tom, and track their movement and interactions over one day, as shown in Fig. 1.
Suppose that, initially, only Mary is infected. From Fig. 1, we can see the complexity of
their visiting paths and interactions. Any interaction with Mary, which consists of visiting
the same location at the same time, may result in an infection, depending on the infectivity
of the epidemic and other factors. For simplicity, we focus on their activities in school and
ignore the travel time spent between locations. If the effect of travelling on infection cannot
be ignored, travel paths can be treated as locations and can be modeled in the same way.

From Fig. 1, we see that different subjects may visit one location at different time
periods; the lengths of the visits may also be different. Two major challenges exist when
characterizing the above scenario:

(1) The time scale is continuous whereas the locations are discrete. How can we
integrate these two types of information?

(2) The visits of different subjects to one location may overlap with each other in time.
How can we distinguish the subjects in the same time period?

These two challenges are unique but essential in epidemic diagnosis. Existing outbreak
detection methods that use aggregated data do not need to handle such issues. In the
following sections, we propose an expanded matrix to encompass a complex dataset and to
allow us to find the infection sources.

2.2. Data Manipulation

Figure 1 demonstrates an intuitive geographic structure of the information. We now trans-
form the data in the figure to a Gantt-type chart, as shown in Table 1. If a subject visits a
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Table 1
Timetable for the daily activities of the subjects at school

certain location during a specific time period, we annotate the location on the corresponding
segment of the timetable. For the purpose of illustration, we assume that location changes
occur only on the hour. For a general situation in which such changes are allowed on a
shorter time interval, more segments will be generated and the scale of the problem will
increase; the proposed scheme for handling such problems is still functional.

Based on the data structure defined in Table 1, we can always find time intervals
during which no subjects visit two locations. In this example, the interval is one hour.
This means that if each segment is taken as one hour, we can segment the continuous time
into eight discrete time intervals without interfering with the location arrangement. In this
way, all of the subjects share the same time segmentation. In a more general situation,
we can always segment the time without having conflicts with the location arrangement;
the intervals do not need to have the same length. This allows the continuous time to be
transformed into discrete time intervals. If the segment length decreases, the number of
segments would increase, and the size of the timetable (a two-dimensional matrix) would
grow. As aforementioned, the proposed surveillance scheme would still functional.

Next, we combine the segmented time intervals and locations. The spatial-temporal
plot shown in Fig. 2 is created to describe the data from a two-dimensional view. In Fig. 2,
the visiting path of each subject is a piecewise function. We can take one location at a time
interval as a spatial-temporal point. For example, the playground from 7:00 to 8:00 can
be considered as a spatial-temporal point. Each subject can visit only one location during
one time interval. Hence, the visiting status of a subject at each spatial-temporal point is
described by a binary variable: visiting or not. By defining each spatial-temporal point
(i.e., the combination of location and time) as one variable, we can further transform the
information shown in Fig. 2 to Table 2.

In Table 2, each column title represents a time-location combination. For example,
x1 represents (7:00–8:00, classroom A), x2 represents (7:00–8:00, classroom B), and x9

represents (8:00–9:00, classroom A). For each combination, the subject may or may not be
present. An indicator value of 1 and 0 is then used to denote whether the subject was present
or not, respectively. Using these notations, we transform the three-dimensional data (time,



Epidemic Disease Diagnosis 1601

Figure 2. The spatial-temporal data on a coordinate graph. (Color figure available online.)

location and subject) into a two-dimensional matrix (time × location as a single dimension
and subject as another dimension). Because the new matrix is formed by expanding the
spatial and temporal information of the subjects, we name it an expanded spatial-temporal
model.

To identify infection sources, the (time, location) combinations could be viewed as
predictors or explanatory variables; the response variable y indicates the infection status
of a subject. Each row, therefore, contains the complete path of a subject within a definite
time range.

Thus, the complete spatial and temporal information has been expanded into a two-way
matrix. When infection cases are found and we are interested in identifying the sources of
infection, it is equivalent to identify which variables (or a single variable) have significant
impact on the value of the response variable y. Since the time and location data have
been integrated with the explanatory variables, when such variables are located, we can
easily attribute the outbreak to specific time and location combinations. For example, if
all subjects with x1 = 1 are infected, we may strongly suspect that epidemic infection
occurred in Classroom A during 7:00–8:00 am. Therefore, the original diagnosis problem
is translated into a statistical problem of identifying variables among predictors that have
significant effects on the infection status.

Table 2
The extracted X and Y variables under each record

Subject x1 x2 x3 x4 x5 . . . . . . x63 x64 y

1 0 0 0 0 0 . . . . . . 1 1 0
2 0 0 0 1 1 . . . . . . 0 0 1
3 0 0 0 0 0 . . . . . . 0 0 0
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2.3. The EST Modeling Framework

Let x = (x1, . . . xi, . . . , xK )T be a vector of all predictors, and

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

x11 · · · x1j · · · x1K

...
. . .

...
. . .

...
xi1 · · · xij · · · xiK

...
. . .

...
. . .

...
xN1 · · · xNj · · · xNK

⎞
⎟⎟⎟⎟⎟⎟⎠

be a matrix containing the trajectories of all subjects being studied, and y =
(y1, . . . yi, . . . , yN )T be a vector containing the infection status of all subjects. If the ith
subject is infected, yi = 1; otherwise, yi = 0. The complete information for the diagnosis
is therefore encapsulated in X and y.

The total number of (time, location) combinations K is determined by the size of the
campus and the fineness of the time domain being considered. For a target community with
L locations, if the time horizon is divided into S segments, the total number of explanatory
variables K would be K = L∗S. Therefore, the formulation framework proposed in this
work is applicable to problems of any size. Naturally, if K increases, the number of subjects
needed for an accurate identification would increase accordingly.

In order to find the variables in x that have a significant effect on y, we need to build
a model between these two sets of variables. Because y is a binary variable that can be
1 or 0, a logistic regression model would be convenient for building the relations among
all variables. Using the above notations, the probability that one subject would be affected
based on a given visiting path (spatial-temporal points and visiting history) can be expressed
as follows:

P (y = 1|X) = π (X) = 1

1 + e−g(X)
(1)

where

g(X) = Xβ (2)

The coefficient vector, β, reflects the significance of each predictor on y. The solution
of Eq. (2) will be introduced in the following section.

We now briefly summarize our proposed modeling strategy for epidemic diagnosis.
For population-clustered communities, such as the school in our example, the daily spatial
and temporal information of subjects could be collected. At the same time, the infection
status of each subject is assumed to be known. The spatial and temporal data are unfolded
and sliced into small segments. The spatial-temporal points are treated as explanatory
variables x. Using the infection information represented by y, an alarm can be back-traced
by searching for a subset of x variables that have a significant impact on y. This modeling
process transforms the epidemic diagnosis problem into a regression model, and in the next
section, we will introduce variable-selection methods to determine the x variables that have
a significant impact on y.

It is emphasized that the availability of detailed information of individuals is critical to
the EST model. In practice, collection of such information from existing IT systems could
be considered, such as the registration, accommodation, dinning, and curriculum systems
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in a school. As aforementioned, for new and high-risk infectious diseases, the collection of
such information may be necessary even additional cost need to be paid.

In addition, as the focus of this work is to provide diagnostic information regarding
when and where is the location/time that people get infected. After identifying such informa-
tion, further analysis with the help of medical domain knowledge is needed. The incubation
period and the medical recognition and confirmation of a case do not affect our statistical
diagnosis model. For example, suppose the incubation period of a particular disease is
10 days. When trying to identify the transmission place for patients confirmed on April 20,
we should analyze the data back to April 10 and identify the common time/location they
have visited. Instead, if the incubation period is 5 days, we should look at the trajectories
of the patients on April 15. Due to observational noise (e.g., delayed diagnosis), it should
be beneficial to cover more data in the analysis.

2.4. Diagnosis via Variable Selection

So far, we have translated the diagnosis problem into an EST model by segmenting the
time axis and combining the spatial and temporal information. Next, we need to identify
the variables in x that have a significant impact on y. Automatic variable selection is an
important topic in data analysis. Traditional methods, such as ordinary least squares (OLS)
estimation, subset selection and stepwise regression, are applicable if we want to find the
significant variables in Eq. (2). However, these methods are less favored due to stability or
efficiency issues.

Tibshirani (1996) proposed a least absolute shrinkage and selection operator (Lasso)
method for variable selection. The Lasso method attempts to estimate the value of β by
solving the following minimization problem:

min
N∑

i=1

⎛
⎝yi −

∑
j

βjxij

⎞
⎠

2

s.t.
∑

j

∣∣βj

∣∣ ≤ t

where t is a regulation parameter. A positive t has the effect of forcing certain small
coefficients in vector β to exactly zero, consequently, removing insignificant variables
from Eq. (2) and increasing the interpretability of the model.

However, the traditional Lasso algorithm assumes that the response variable is continu-
ous. To incorporate logistic regression with variable selection, algorithms such as Bayesian
binary regression (Genkin et al. (2007)), the l1logreg algorithm (Koh et al. (2007)) and
glmnet algorithm (Friedman et al. (2010)) have been developed. The glmnet method is a
logistic regression with sparse features that is faster than the other two methods. Therefore,
in this work, the glmnet algorithms employed in these work to select explanatory variables
from Eq. (2) and provide diagnostic information for surveillance.

The glmnet algorithm maximizes the following penalized log likelihood function

max
(β0,β)∈Rp+1

[
1

N

N∑
i=1

{I (yi = 0) log p(xi) + I (yi = 1) log(1 − p(xi))} − λPα(β)

]
(3)

where

Pα(β) =
K∑

j=1

[
1

2
(1 − α) β2

j + α
∣∣βj

∣∣]



1604 Zhou et al.

is the elastic-net penalty, which sets the coefficients of the insignificant explanatory variables
to zero. The pseudo code of the glmnet algorithm for variable selection is provided in the
appendix. More details of this algorithm can be found in the original work of Friedman
et al. (2010).

The solution to Eq. (3) can reveal the variables that are significant to the infection
status. Variables with nonzero coefficients may potentially be responsible for epidemic
infections. Because each variable is defined by a combination of location and time, such
information provides further insights for diagnosing the root cause.

3. Performance Study

To validate the EST model and evaluate its performance, we conduct studies based on data
from a simulated school in this section. Here, we still use point to denote a spatial-temporal
combination, which is also a variable in the EST model. An infection point is a point that
has contributed to the spread of an epidemic. The following two indices are used in the
studies for performance evaluation:

(1) False discovery rate (FDR): the proportion of points that are wrongly identified as
infection sources. If no sources of infection are identified, FDR is zero.

(2) Omission rate (OR): the proportion of points that are in fact infection sources but
that are missed by the selection algorithm. If all points are identified as sources,
OR is zero.

The following parameters, which may vary with the school size and the properties of
different epidemics, can influence the performance indices:

(1) Infectious rate: this rate represents the infectivity of a specific epidemic disease,
(2) λ: this is the statistical tuning parameter shown in Eq. (3); it affects the weight of

the penalty in the objective function and influences the number of variables that
can be selected.

In the following sections, these parameters are studied under different settings; the
corresponding performance results are reported for comparison.

3.1. Simulation Setup

The simulation is based on the model described in Sec. 2, which is a school with a certain
number of subjects and locations. The following settings are used in the simulation:

(1) The number of tracked subjects, which represents the number of rows in X. In this
simulation, three levels for this number are studied: a small class level with 30
subjects, a large class level with 50 subjects and a grade level with 300 subjects.

(2) The number of points (spatial-temporal combinations), which is the number of
variables in the model. For the case with 30 subjects, we assume there are 10
points; for the case with 50 subjects, we assume there are 20 points; for the case
with 300 subjects, there are 100 points.

(3) The infection points, which are defined as points that are infectious. If a non-
infected subject visits an infectious point, the subject has a chance of being infected.
These infection points are the true root causes that we want to identify in diagnosis.
It should be noted that, an infectious disease is commonly transmitted from
one subject to other subjects. Therefore, it is the subject, rather than the point,
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that is infectious. The infectious points should be dynamic, following the trav-
elling path of the infected subjects. However, for a given visiting history, we
can consider any spatial-temporal combination that contains infected subjects
at infection points as points at which the disease is potentially spread. This
treatment only simplifies the generation process of simulated data and does
not change the data structure or the implementation of the proposed method.
In the following study, we assume that there are 3 infection points for the case with
10 points, 5 infection points for the case with 20 points and 12 infection points for
the case with 100 points.

(4) The visiting rate to the infectious and non-infectious points. The travelling path
of each subject is assumed to be random, independent, and non-repeatable (since
a subject could not re-visit a point that contains the same temporal information).
The visiting rate defines the probability that a location is visited by the subjects.
For illustration, we set the visiting rate to the non-infectious points to be 0.3 and
the rate to the infectious points to be 0.4. Then, each non-infectious point will be
visited by the subjects at a probability of 30%, and each infectious point will be
visited by the subjects at a probability of 40%.

(5) The infectious rate: after visiting an infectious point, a subject is infected at the
infectious rate. This parameter is set to 0.3 for low-level infectious diseases, 0.5
for middle-level infectious diseases and 0.7 for high-level infectious diseases.

In total, nine scenarios are used for the simulation, as shown in Table 3. Each perfor-
mance index is calculated based on the results from 100 replicates.

3.2. Performance Comparison

In the current practice of epidemic diagnosis, a natural and simply way to identify root
causes is to perform a statistical test for two proportions. For example, to verify whether
x1, which corresponds to a specific location and time, is a point that influences the infection
status, one may classify all subjects into two groups: those with x1 = 1, i.e., those who
have this point in their travelling path, and those with x1 = 0, i.e., those who do not have
this point in their visiting path. Then, one may use a test for two proportions to determine
whether the numbers of infected subjects are significantly different. If they are, this point
is considered the reason for the difference and, is treated as an infection point.

Table 3
Settings for simulation

Scenario # of Subjects # of Points # of Infection points Infectious rate

1 30 10 3 0.3
2 30 10 3 0.5
3 30 10 3 0.7
4 50 20 4 0.3
5 50 20 4 0.5
6 50 20 4 0.7
7 300 100 12 0.3
8 300 100 12 0.5
9 300 100 12 0.7
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Figure 3. Performance comparison. (Color figure available online.)

In the following, the 2-proportion test procedure is used as an alternative to our proposed
method for diagnosis, and the results from the two methods are compared by calculating
the same criteria, i.e., the false discovery rate and the omission rate. The results are shown
in Fig. 3. The numbers of subjects, total points, infection points, and the method used, are
shown beneath each plot.
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It should be noted that for the methods using Lasso variable selection based on the
proposed EST model, when the tuning parameter λ in Eq. (3) increases, more zeros will
be seen in the coefficient vector after variable selection. Therefore, OR will increase
accordingly, as FDR decreases. For the 2-proportion test, when type I error rate α increases,
there is a trend that more points will be judged as infectious. Consequently, OR will decrease
as FDR increases. For comparison, we arrange the horizontal axis of the 2-proportion test
to decrease so that the FDR and OR values on both plots would show the same increasing
or decreasing trend.

It is learned from Fig. 3 that:

(1) For both of the methods studied, FDR decreases and OR increases when λ increases
or α decreases. The Lasso-based method shows a sharp decreasing trend in the
FDR curve when λ increases from zero, while a much slower increasing trend is
observed in the OR curve. When λ exceeds a certain value (approximately 0.2),
both curves become flat. This suggests that an optimal λ can be chosen to achieve a
balance between FDR and OR. Similar patterns are observed for the 2-proportion
test methods, except that the decrease in FDR is much slower.

(2) As shown in plots (a) and (b), a lower FDR and a higher OR are observed when
the Lasso variable-selection algorithm is used, as compared to the 2-proportion
test. In plot (b), the cases with α equal to approximately 0.03 or 0.05 achieves an
overall good performance.

(3) Plots (c) and (d) shows that the FDR of the 2-proportion test becomes rather high
for a problem with a moderate scale. When the scale of the problem becomes
larger (as shown in plots (e) and (f)), the FDR of the 2-proportion test becomes
unacceptably high, even for a very small α. On the other hand, the FDR of the
Lasso variable-selection method is almost zero at λ ≥ 0.15; the corresponding OR
is stabilized at approximately 11%.

(4) It is also found that when the infectious rate increases, both the FDR and OR of
the Lasso variable-selection method tend to decrease; however, the FDR of the
2-proportion test becomes larger as the infectious rate increases from 0.3 to 0.7.

We therefore conclude that the 2-proportion test method is competitive for small-scale
scenarios. However, for moderate- or large-scale scenarios with hundreds of subjects and
points (spatial-temporal combinations), the 2-proportion test method becomes less efficient.
Instead, the Lasso variable-selection method is more advantageous and stable for large-
scale scenarios. The Lasso-based variable-selection scheme can identify spatial-temporal
information regarding the sources of infection, thereby providing guidelines for effective
immunity efforts.

4. Conclusions

Epidemic surveillance in a community involves both outbreak detection and source diag-
nosis. Even though identifying the disease transmission path in a timely manner is essential
for effective immunity efforts, most existing works have focused on detecting outbreaks
based on aggregated data. When the complete travelling paths of subjects (including both
location and time information) are known, making full use of such data for diagnosis
becomes challenging.

In this paper, we propose an expanded spatial-temporal (EST) model to characterize
the activities of activities of the subjects. Three-dimensional information (subject, location
and time) is expanded into a two-dimensional space by dividing the time horizon into
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segments and by multiplying the segments with the locations. Based on the EST model,
we further propose to use a variable-selection algorithm to identify potential location/time
combinations as transmission sources and to satisfy the goal of diagnosis. Numerical
simulations show that the proposed scheme is effective in locating sources of infection.

The EST model can be utilized to illustrate any general communities with additional
subjects and different types of activities. Therefore, although motivated by a school example,
the proposed diagnosis scheme can be extended to more general scenarios to help control
epidemic transmission in practice by using more effective measures.

Current research on outbreak detection mainly relies on the counted numbers of subjects
at certain aggregated levels. Because the EST model contains more detailed information
on the subjects as compared to traditional methods, detection methods based on the EST
model are a promising technique that merits future research efforts.

Appendix

Pseudo Code for Lasso Variable Selection

The glmnet package developed by Friedman et al. (2010) for variable selection uses a
coordinate descent algorithm to find the minimization of the above objective function;
the whole solution path for λmin ≤ λ ≤ λmax is calculated (λmin is defined below). Let xi

be the ith observation, yi be the ith response, N be the total number of observations,
βj be the j th component of β, and (β̃0, β̃) be the estimate of (β0, β). The algorithm
works as follows (for more details of this algorithm, please see Friedman et al. (2010)):

1) First, obtained the smallest λmax such that β̃ = 0, that is, find the smallest weight
for the penalty such that all estimated elements are penalized to zero;

2) Determine λmin = ελmax as the lower bound for the tuning parameter λ. The
parameter ε usually takes the value of 0.001.

3) For k = 0, 1, 2, . . . , K (K typically equals 100)
a) Decrease λ: λ = ε

k
K · λmax

b) For all i = 1, . . . , N , calculate p̃(xi) = (1 + e−(β̃0+xT
i β̃))−1, which is the

probability that the response variable takes the value 1;
c) For all i = 1, . . . , N , calculate wi = p̃(xi)(1 − p̃(xi))
d) For all i = 1, . . . , N , calculate zi = β̃0 + xT

i β̃ + yi−p̃(xi )
p̃(xi )(1−p̃(xi ))

e) Update �Q(β0, β) = − 1
2N

∑N
i=1 wi(zi − β0 − xT

i β)2 + C(β̃0, β̃)2

f) Solve min
(β0,β)∈RP+1

{−�Q(β0, β) + λ
∑p

j=1 |βj |} by coordinate descent to get

(β̃0, β̃), thus obtain the solution corresponds to the specific λ assigned in
step a).
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